統合ビッグデータ研究センター
MENUCLOSE
研究業績
2023年度
主な論文・著書・特許等
- A.K. Tran, D.V. Nguyen, M.S. Dao, K. Zettsu: AOP: Towards Adaptive Offloading Point Approach in a Federated Learning Framework for Edge AI Applications, The 29th IEEE International Conference on Parallel and Distributed Systems (ICPADS 2023), Ocean Flower Island (海花岛), Hainan, China (December 2023).
- M.S. Dao, H.Q. Ung, S. Ito, S. Wada, K. Zettsu: Fostering Innovation in Urban Transportation Risk Management: A Multi-Sector Collaborative Benchmarking Platform, IEEE Big Data 2023, HILTON SORRENTO PALACE Via Sant'Antonio 13 | 80067 | Sorrento | Napoli | Italy, pp.1903-1907 (December 2023).
- P. Veena, R.U. Kiran, P. Ravikumar, P. Likhitha, Y. Watanobe, S. Ito, K.Zettsu, M.Toyoda, B. Venus Vikranth Raj: 3P-ECLAT: mining partial periodic patterns in columnar temporal databases, Applied Intelligence (December 2023).
- M.S. Dao, H. Pradana, K. Zettsu: MM-TrafficRisk: A Video-based Fleet Management Application for Traffic Risk Prediction, Prevention, and Querying, IEEE Big Data 2023, HILTON SORRENTO PALACE Via Sant'Antonio 13 | 80067 | Sorrento | Napoli | Italy, pp.1697-1706 (December 2023).
- 是津耕司:スマート都市デジタルツインのためのAIプラットフォーム, 電子情報通信学会技術研究報告, Vol 123, No. 248, pp.42-46 (2023年11月).
- D.V. Nguyen: Federated learning with Diverse Edges in IoT intelligent systems, The 9th IEEE World Forum on the Internet of Things, Online (October 2023).
- P. Veena, T. Sreepada, R.U. Kiran, M.S. Dao, K. Zettsu, Y. Watanobe, J. Zhang: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases Using Set Compliments, IEEE Access, Vol.11, pp.118676-118688 (October 2023).
- P. Veena, R.U. Kiran, P. Ravikumar, P. Likhitha, Y. Hayamizu, K. Goda, M. Toyoda, K. Zettsu, S. Shrivastava: A fundamental approach to discover closed periodic‐frequent patterns in very large temporal databases, Journal of Applied Intelligence, pp.1-30 (September 2023).
- K. Zettsu: Digital Twin Orchestration, IOWN Global Forum 6th Member Meeting, Munich, Germany (September 2023).
- P. Veena, P. Likhitha, R.U. Kiran, J.M. Luna, P. Fournier-Viger, K. Zettsu: Discovering Fuzzy Partial Periodic Patterns in Quantitative Irregular Multiple Time Series, IEEE-Fuzzy 2023, Songdo Incheon, Korea (August 2023).
- M.A. Ton-Thien, C.T. Nguyen, Q.M. Le, D.Q. Duong, M.S. Dao, B. Nguen: Air Pollution Forecasting Using Multimodal Data, International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE) 2023, Online, Vol.13926, pp.360-371 (July 2023).
- M.S. Dao, K. Zettsu: Leveraging Knowledge Graphs for CheapFakes Detection: Beyond Dataset Evaluation, ICME 2023 - Grand Challenge of CheapFakes Detection, Brisbane, Australia, pp.99-104 (July 2023).
- H. Pradana: An End-to-End Online Traffic-Risk Incident Prediction in First-Person Dash Camera Videos, Big Data and Cognitive Computing, Vol.7, pp.129 (July 2023).
- G. Habault, M.S. Dao, M.A. Riegler, D.T.D. Nguyen, Y. Nakashima, C. Gurrin: ICDAR’23: Intelligent Cross-Data Analysis and Retrieval, ICMR2023 - ICDAR workshop, Thessaloniki, Greece, pp.674-675 (June 2023).
- K.L. Pham, M.T. Nguyen, A.D. Tran, M.S. Dao, D.T. Dang-Nguyen: Detecting Cheapfakes using Self-Query Adaptive-Context Learning, ICMR 2023 - ICDAR workshop, Thessaloniki, Greece, pp.60-63 (June 2023).
- W. Gan, M.S. Dao, K. Zettsu: Procedural Driving Skill Coaching from More Skilled Drivers to Safer Drivers: A Survey, 4th ACM Workshop on Intelligent Cross-Data Analysis and Retrieval, ACM International Conference on Multimedia Retrieval 2023, Thessaloniki, Greece, pp.10-18 (June 2023).
- H.Q. Ung, Y. Mishima, H. Niu, S. Wada: Towards Multimodal Spatio-Temporal Transformer-based Modelsfor Traffic Congestion Prediction, ICMR 2023 - ICDAR Workshop, Thessaloniki, Greece, pp.19-23 (June 2023).
- P. Likhitha, P. Veena, R.U. Kiran, K. Zettsu: Discovering Geo-referenced Frequent Patterns in Uncertain Geo-referenced Transactional Databases, PAKDD 2023, Osaka, Japan, pp.29-41 (May 2023).